Приведение дробей к общему знаменателю
Как известно, обыкновенная дробь состоит из числителя и знаменателя. Знаменатель — это натуральное число находящееся под чертой:
a — числитель, b — знаменатель.
Общий знаменатель
Общий знаменатель — это любое натуральное число, которое без остатка делится на все знаменатели дробей, т.е. является их общим кратным. Для нескольких дробей можно найти бесконечно много общих знаменателей.
Для нахождения общего знаменателя достаточно найти числа кратные и двойке и тройке. Это будет: 6, 12, 18 и т.д. К примеру, 4, 8, 10 кратны двойке, но не кратны тройке — поэтому не будут являться общим знаменателем.
Наименьший общий знаменатель дробей
Зная, что такое общий знаменатель, нетрудно догадаться, что наименьший общий знаменатель — это наименьшее число, которое делится без остатка на все знаменатели дробей.
Возвращаясь к предыдущему примеру, можно с уверенностью сказать, что 12 будет общим знаменателем двойки и тройки, но наименьшим не будет. Наименьшим общим знаменателем будет — 6.
Как найти наименьший общий знаменатель?
Бывают ситуации когда в уме найти наименьший общий знаменатель сложно. Для этого есть алгоритм, который сводится к нахождению наименьшего общего кратного (НОК). НОК и будет являться НОЗ. Для нахождения НОК необходимо:
- разложить оба знаменателя на простые множители;
- выписать множители входящее в одно из разложений и добавить отсутствующие множители из второго разложения;
- вычислить их произведение.
Пример 2: Найти НОК чисел 12 и 8.
Согласно алгоритму раскладываем оба числа на простые множители:
12 = 2 · 2 · 3;
12 | 2 |
6 | 2 |
3 | 3 |
1 |
8 = 2 · 2 · 2;
8 | 2 |
4 | 2 |
2 | 2 |
1 |
Берем множители из первого разложения — 2, 2, 3. И добавляем отсутствующие из второго. В нашем случае во втором 3 двойки, но т.к. в первом разложении уже присутствуют 2 двойки — то недостающей будет одна. Таким образом получается набор цифр 2, 2, 3, 2 — которые необходимо перемножить. Отсюда 2 · 2 · 3 · 2 = 24.
Ответ: НОК (12; 8) = 24.
Пример 3: Найти НОК чисел 388 и 142.
Данный пример, с точки зрения вычислений сложнее, однако наглядно демонстрирует важность понимания алгоритма:
388 = 2 · 2 · 97;
388 | 2 |
194 | 2 |
97 | 97 |
1 |
142 = 2 · 71;
142 | 2 |
71 | 71 |
1 |
Ответ: НОК (388; 142) = 27548.
Практическое применение
На практике нахождение наименьшего общего знаменателя, используется, к примеру, при арифметических действиях с дробями (сложение, вычитание), при сравнении дробей и других задачах, где необходимо, как найти НОЗ, так и привести дроби к общему знаменателю.
Приведение дробей к общему знаменателю
Правило приведения дробей к общему знаменателю:
- Найти наименьший общий знаменатель дробей (НОЗ);
- Для каждой дроби найти дополнительный множитель (НОЗ разделить на каждый знаменатель);
- Умножаем числитель на дополнительный множитель.
- Согласно алгоритму находим НОЗ для знаменателей 12 и 8. Выше, во втором примере, мы уже находили НОК для 12 и 8. Как уже было сказано ранее НОЗ = НОК. Таким образом, НОЗ = 24.
- Находим дополнительные множители:
24 : 12 = 2
24 : 8 = 3
- Умножаем числители на дополнительные множители:
4 · 2 = 8
3 · 3 = 9
Таким образом:
Смотрите также:
Полезные материалы
Онлайн калькуляторы
Последние примеры
- Перевести 1.245 в обыкновенную дробь
- Перевести десятичное число 0.058 в обыкновенную дробь
- Перевести 19.2 в обыкновенную дробь
- Перевести 0.118 из десятичной в обыкновенную дробь
- 0.462 в обыкновенную дробь
- Перевести 0.222 в обыкновенную дробь
- 3.0001 в обыкновенную дробь
- Перевести 0.077 из десятичной в обыкновенную
- Перевести десятичную дробь 0.325 в обыкновенную