2(2/7) умножить на 4(1/6)
Задача: найти произведение дробей
2
2 7
и
4
1 6
.
Решение:
2
2 7
×
4
1 6
=
2 ∙ 7 + 2 7
×
4 ∙ 6 + 1 6
=
16 7
×
25 6
=
16 ∙ 25 7 ∙ 6
=
400 42
=
200 21
=
9
11 21
Ответ:
2
2 7
×
4
1 6
=
9
11 21
.
Подробное объяснение:
- Приведём смешанные дроби к неправильному виду:
- Перемножаем числители и знаменатели:
- Сократим дробь:
- Переведем неправильную дробь в смешанную:
Умножение смешанных дробей сводится в их преобразовании к неправильному виду и дальнейшему перемножению числителей и знаменателей.
2
2 7
— смешанная дробь.
Для перевода в неправильную, необходимо целое число умножить на знаменатель и прибавить числитель, т.е.:
2
2 7
=
2 ∙ 7 + 2 7
=
16 7
4
1 6
— смешанная дробь.
Для перевода в неправильную, необходимо целое число умножить на знаменатель и прибавить числитель, т.е.:
4
1 6
=
4 ∙ 6 + 1 6
=
25 6
16 ∙ 25 7 ∙ 6
=
400 42
В результате умножения получилась дробь
400 42
, которую можно сократить.
Для этого необходимо найти наибольшее число, на которое делится и 400, и 42. В нашем случае это — 2. Разделим числитель и знаменатель на 2 и получим:
400 : 2 42 : 2
=
200 21
Подробнее о сокращении дробей, смотрите тут.
200 21
— неправильная, т.к. числитель 200 больше знаменателя 21.
Переведем её в смешанную дробь. Для этого разделим числитель на знаменатель. Целая часть от деления — будет целой частью смешанной дроби, остаток от деления — числителем, знаменатель — останется прежним. В нашем случае это:
200 21
=
9
11 21
Подробнее о переводе в смешанную дробь, смотрите тут.
Таким образом:
2
2 7
×
4
1 6
=
9
11 21