Сократите дробь 273/32

Задача: сократить дробь
273 32
Решение:
273 32
=
273 : 1 32 : 1
=
273 32
=
8
17 32
Ответ:
273 32
=
8
17 32

Подробное объяснение:

  1. Найдём наибольший общий делитель (НОД)
  2. НОД — это наибольшее число, на которое 273 и 32 делятся без остатка.

    Для нахождения НОД (273;32) необходимо:

    • разложить 273 и 32 на простые множители;
    • взять те множители, которые входят в разложение каждого из чисел;
    • вычислить их произведение.

    Отсюда:

    273 = 3 · 7 · 13;

    273 3
    91 7
    13 13
    1

    32 = 2 · 2 · 2 · 2 · 2;

    32 2
    16 2
    8 2
    4 2
    2 2
    1
    НОД (273; 32) = 1 (Частный случай, т.к. 273 и 32 — взаимно простые числа).

  3. Разделим числитель и знаменатель на НОД
  4. 273 : 1 32 : 1
    =
    273 32

  5. Переведем неправильную дробь в смешанную:
  6. 273 32
    — неправильная, т.к. числитель 273 больше знаменателя 32.
    Переведем её в смешанную дробь. Для этого разделим числитель на знаменатель. Результат деления — будет целой частью, остаток от деления — числителем, знаменатель — остается прежним. В нашем случае это:
    273 32
    =
    8
    17 32
Таким образом:
273 32
=
8
17 32

Смотрите также:

  • Смотрите также
  • Калькуляторы
  • Последние примеры

Калькулятор сокращения дробей

* Все поля обязательны
Подписаться
Уведомить о
guest
0 комментариев
Межтекстовые Отзывы
Посмотреть все комментарии