Сократите дробь 8(7/30)

Задача: сократить дробь
8
7 30
Решение:
8
7 30
=
8 ∙ 30 + 7 30
=
247 30
=
247 : 1 30 : 1
=
247 30
=
8
7 30
Ответ:
8
7 30
=
8
7 30

Подробное объяснение:

  1. Переведем смешанную дробь в неправильную:
  2. Для перевода в неправильную, необходимо целое число умножить на знаменатель и прибавить числитель, т.е.:
    8
    7 30
    =
    8 ∙ 30 + 7 30
    =
    247 30

  3. Найдём наибольший общий делитель (НОД)
  4. НОД — это наибольшее число, на которое 247 и 30 делятся без остатка.

    Для нахождения НОД (247;30) необходимо:

    • разложить 247 и 30 на простые множители;
    • взять те множители, которые входят в разложение каждого из чисел;
    • вычислить их произведение.

    Отсюда:

    247 = 13 · 19;

    247 13
    19 19
    1

    30 = 2 · 3 · 5;

    30 2
    15 3
    5 5
    1
    НОД (247; 30) = 1 (Частный случай, т.к. 247 и 30 — взаимно простые числа).

  5. Разделим числитель и знаменатель на НОД
  6. 247 : 1 30 : 1
    =
    247 30

  7. Переведем неправильную дробь в смешанную:
  8. 247 30
    — неправильная, т.к. числитель 247 больше знаменателя 30.
    Переведем её в смешанную дробь. Для этого разделим числитель на знаменатель. Результат деления — будет целой частью, остаток от деления — числителем, знаменатель — остается прежним. В нашем случае это:
    247 30
    =
    8
    7 30
Таким образом:
8
7 30
=
8
7 30

Смотрите также:

Подписаться
Уведомить о
guest
0 комментариев
Межтекстовые Отзывы
Посмотреть все комментарии