1(8/10) умножить на 7/9

Задача: найти произведение дробей
1
8 10
и
7 9

.

Решение:
1
8 10
×
7 9
=
1 ∙ 10 + 8 10
×
7 9
=
18 10
×
7 9
=
18 ∙ 7 10 ∙ 9
=
126 90
=
7 5
=
1
2 5
Ответ:
1
8 10
×
7 9
=
1
2 5

.

Подробное объяснение:

    Умножение смешанных дробей сводится в их преобразовании к неправильному виду и дальнейшему перемножению числителей и знаменателей.

  1. Приведём смешанные дроби к неправильному виду:
  2. 1
    8 10
    — смешанная дробь.

    Для перевода в неправильную, необходимо целое число умножить на знаменатель и прибавить числитель, т.е.:

    1
    8 10
    =
    1 ∙ 10 + 8 10
    =
    18 10
    7 9
    — обыкновенная дробь.
  3. Перемножаем числители и знаменатели:
  4. 18 ∙ 7 10 ∙ 9
    =
    126 90
  5. Сократим дробь:
  6. В результате умножения получилась дробь
    126 90
    , которую можно сократить.
    Для этого необходимо найти наибольшее число, на которое делится и 126, и 90. В нашем случае это — 18. Разделим числитель и знаменатель на 18 и получим:
    126 : 18 90 : 18
    =
    7 5
    Подробнее о сокращении дробей, смотрите тут.
  7. Переведем неправильную дробь в смешанную:
  8. 7 5
    — неправильная, т.к. числитель 7 больше знаменателя 5.
    Переведем её в смешанную дробь. Для этого разделим числитель на знаменатель. Целая часть от деления — будет целой частью смешанной дроби, остаток от деления — числителем, знаменатель — останется прежним. В нашем случае это:
    7 5
    =
    1
    2 5
    Подробнее о переводе в смешанную дробь, смотрите тут.
Таким образом:
1
8 10
×
7 9
=
1
2 5

Смотрите также:

  • Смотрите также
  • Калькуляторы
  • Последние примеры

Калькулятор умножения дробей

* Все поля обязательны
  • ×
Подписаться
Уведомить о
guest
0 комментариев
Межтекстовые Отзывы
Посмотреть все комментарии