Сложение дробей 2/3 + (-5/12)
Задача: сложить дроби
2 3
и
(-
5 12
)
.
Решение:
2 3
+
(-
5 12
)
=
2 ∙ 4 12
+
-5 ∙ 1 12
=
8 12
+
-5 12
=
8 + (-5) 12
=
3 12
=
1 4
Ответ:
2 3
+
(-
5 12
)
=
1 4
.
Подробное объяснение:
- Найдём наименьший общий знаменатель (НОЗ):
- Вычислим дополнительные множители для каждой дроби. Для этого НОЗ разделим на каждый знаменатель:
- Приведем дроби к новому знаменателю. Для этого полученные множители перемножаем с числителями, а знаменателем обоих дробей станет найденный НОЗ:
- Складываем числители:
- Сократим дробь:
Сложение дробей с разными знаменателями, сводится в их преобразовании к общему знаменателю, и дальнейшему сложению числителей. Для этого:
НОЗ — это наименьшее число, которое без остатка делится на оба знаменателя. В нашем случае необходимо найти наименьшее число, которое делится и на 3 и на 12. Это — 12.
12 : 3 = 4
12 : 12 = 1
2 ∙ 4 12
+
-5 ∙ 1 12
=
8 12
+
-5 12
8 + (-5) 12
=
3 12
В результате сложения получилась дробь
3 12
, которую можно сократить.
Для этого необходимо найти наибольшее число, на которое делится и 3, и на 12. В нашем случае это — 3. Разделим числитель и знаменатель на 3 и получим:
Таким образом:
2 3
+
(-
5 12
)
=
1 4
Смотрите также:
Полезные материалы
Онлайн калькуляторы
Последние примеры на сложение дробей
Калькулятор сложения дробей
Подписаться
авторизуйтесь
0 комментариев