Сложение дробей 4/8 + 1/3
Задача: сложить дроби
4 8
и
1 3
.
Решение:
4 8
+
1 3
=
4 ∙ 3 24
+
1 ∙ 8 24
=
12 24
+
8 24
=
12 + 8 24
=
20 24
=
5 6
Ответ:
4 8
+
1 3
=
5 6
.
Подробное объяснение:
- Найдём наименьший общий знаменатель (НОЗ):
- Вычислим дополнительные множители для каждой дроби. Для этого НОЗ разделим на каждый знаменатель:
- Приведем дроби к новому знаменателю. Для этого полученные множители перемножаем с числителями, а знаменателем обоих дробей станет найденный НОЗ:
- Складываем числители:
- Сократим дробь:
- Выполните сложение дробей 131 3и11 4
-
5 6прибавить11 10- решение с ответом
- Результат от сложения
7 16и(-9 16)
- Результат от сложения
7 12и(-17 18)
-
5 13+2 3- решение с ответом
- 25 6плюс15 12- решение с ответом
-
29 15+4 3- решение с ответом
-
1 70+1 68- решение с ответом
-
10 2+5 10равно?
Сложение дробей с разными знаменателями, сводится в их преобразовании к общему знаменателю, и дальнейшему сложению числителей. Для этого:
НОЗ — это наименьшее число, которое без остатка делится на оба знаменателя. В нашем случае необходимо найти наименьшее число, которое делится и на 8 и на 3. Это — 24.
24 : 8 = 3
24 : 3 = 8
4 ∙ 3 24
+
1 ∙ 8 24
=
12 24
+
8 24
12 + 8 24
=
20 24
В результате сложения получилась дробь
20 24
, которую можно сократить.
Для этого необходимо найти наибольшее число, на которое делится и 20, и на 24. В нашем случае это — 4. Разделим числитель и знаменатель на 4 и получим:
Таким образом:
4 8
+
1 3
=
5 6
Смотрите также:
Полезные материалы
Онлайн калькуляторы
Последние примеры на сложение дробей
Калькулятор сложения дробей
Подписаться
авторизуйтесь
0 комментариев