Сложение дробей 5/12 + 1/4
Задача: cложить дроби
5 12
и
1 4
Решение:
5 12
+
1 4
=
5 ∙ 1 12
+
1 ∙ 3 12
=
5 12
+
3 12
=
5 + 3 12
=
8 12
=
2 3
Ответ:
5 12
+
1 4
=
2 3
Подробное объяснение:
- Найдём наименьший общий знаменатель (НОЗ):
- Вычислим дополнительные множители для каждой дроби. Для этого НОЗ разделим на каждый знаменатель:
- Приведем дроби к новому знаменателю. Для этого полученные множители перемножаем с числителями, а знаменателем обоих дробей станет найденный НОЗ:
- Складываем числители:
- Сократим дробь:
- Смотрите также
- Калькуляторы
- Последние примеры
- -2 8+(-1 2)- решение с ответом
- Результат от сложения
11 16и3 20
- 81 15плюс42 10- решение с ответом
- Запишите результат от сложения
7 16и31 32
- 37 8+3 4равно?
- 11 1прибавить5 9- решение с ответом
- Выполните сложение 81 8и91 2
- 75 16прибавить83 16- решение с ответом
- Как сложить 45 9и?11 6
Сложение дробей с разными знаменателями, сводится в их преобразовании к общему знаменателю, и дальнейшему сложению числителей. Для этого:
НОЗ — это наименьшее число, которое без остатка делится на оба знаменателя. В нашем случае необходимо найти наименьшее число, которое делится и на 12 и на 4. Это — 12.
12 : 12 = 1
12 : 4 = 3
5 ∙ 1 12
+
1 ∙ 3 12
=
5 12
+
3 12
5 + 3 12
=
8 12
В результате сложения получилась дробь
8 12
, которую можно сократить.
Для этого необходимо найти наибольшее число, на которое делится и 8, и на 12. В нашем случае это — 4. Разделим числитель и знаменатель на 4 и получим:
Таким образом:
5 12
+
1 4
=
2 3
Смотрите также:
Полезные материалы
Онлайн калькуляторы
Последние примеры на сложение дробей
Калькулятор сложения дробей
Подписаться
авторизуйтесь
0 комментариев

