Сложение дробей 5/6 + 1/5
Задача: cложить дроби
5 6
и
1 5
Решение:
5 6
+
1 5
=
5 ∙ 5 30
+
1 ∙ 6 30
=
25 30
+
6 30
=
25 + 6 30
=
31 30
=
1
1 30
Ответ:
5 6
+
1 5
=
1
1 30
Подробное объяснение:
- Найдём наименьший общий знаменатель (НОЗ):
- Вычислим дополнительные множители для каждой дроби. Для этого НОЗ разделим на каждый знаменатель:
- Приведем дроби к новому знаменателю. Для этого полученные множители перемножаем с числителями, а знаменателем обоих дробей станет найденный НОЗ:
- Складываем числители:
- Переведем неправильную дробь в смешанную:
Сложение дробей с разными знаменателями, сводится в их преобразовании к общему знаменателю, и дальнейшему сложению числителей. Для этого:
НОЗ — это наименьшее число, которое без остатка делится на оба знаменателя. В нашем случае необходимо найти наименьшее число, которое делится и на 6 и на 5. Это — 30.
30 : 6 = 5
30 : 5 = 6
5 ∙ 5 30
+
1 ∙ 6 30
=
25 30
+
6 30
25 + 6 30
=
31 30
31 30
— неправильная дробь, т.к. 31 больше 30.
Переведем её в смешанную дробь. Для этого разделим числитель на знаменатель. Целая часть от деления — будет целой частью смешанной дроби, остаток от деления — числителем, знаменатель — останется прежним. В нашем случае это:
31 30
=
1
1 30
Подробнее о переводе в смешанную дробь, смотрите тут.
Таким образом:
5 6
+
1 5
=
1
1 30