Сложение дробей 8/9 + 3/18

Задача: сложить дроби
8 9
и
3 18

.

Решение:
8 9
+
3 18
=
8 ∙ 2 18
+
3 ∙ 1 18
=
16 18
+
3 18
=
16 + 3 18
=
19 18
=
1
1 18
Ответ:
8 9
+
3 18
=
1
1 18

.

Подробное объяснение:

    Сложение дробей с разными знаменателями, сводится в их преобразовании к общему знаменателю, и дальнейшему сложению числителей. Для этого:

  1. Найдём наименьший общий знаменатель (НОЗ):
  2. НОЗ — это наименьшее число, которое без остатка делится на оба знаменателя. В нашем случае необходимо найти наименьшее число, которое делится и на 9 и на 18. Это — 18.

  3. Вычислим дополнительные множители для каждой дроби. Для этого НОЗ разделим на каждый знаменатель:
  4. 18 : 9 = 2

    18 : 18 = 1

  5. Приведем дроби к новому знаменателю. Для этого полученные множители перемножаем с числителями, а знаменателем обоих дробей станет найденный НОЗ:
  6. 8 ∙ 2 18
    +
    3 ∙ 1 18
    =
    16 18
    +
    3 18

  7. Складываем числители:
  8. 16 + 3 18
    =
    19 18
  9. Переведем неправильную дробь в смешанную:
  10. 19 18
    — неправильная дробь, т.к. 19 больше 18.
    Переведем её в смешанную дробь. Для этого разделим числитель на знаменатель. Целая часть от деления — будет целой частью смешанной дроби, остаток от деления — числителем, знаменатель — останется прежним. В нашем случае это:
    19 18
    =
    1
    1 18
    Подробнее о переводе в смешанную дробь, смотрите тут.
Таким образом:
8 9
+
3 18
=
1
1 18

Смотрите также:

  • Смотрите также
  • Калькуляторы
  • Последние примеры

Калькулятор сложения дробей

* Все поля обязательны
  • +
Подписаться
Уведомить о
guest
0 комментариев
Межтекстовые Отзывы
Посмотреть все комментарии