Сократите дробь 19680/9840
Задача: сократить дробь
19680 9840
Решение:
19680 9840
=
19680 : 9840 9840 : 9840
=
2 1
=
2
Ответ:
19680 9840
=
2
Подробное объяснение:
- Найдём наибольший общий делитель (НОД)
- разложить 19680 и 9840 на простые множители;
- взять те множители, которые входят в разложение каждого из чисел;
- вычислить их произведение.
- Разделим числитель и знаменатель на НОД
- Переведем неправильную дробь в смешанную:
НОД — это наибольшее число, на которое 19680 и 9840 делятся без остатка.
Для нахождения НОД (19680;9840) необходимо:
Отсюда:
19680 = 2 · 2 · 2 · 2 · 2 · 3 · 5 · 41;
19680 | 2 |
9840 | 2 |
4920 | 2 |
2460 | 2 |
1230 | 2 |
615 | 3 |
205 | 5 |
41 | 41 |
1 |
9840 = 2 · 2 · 2 · 2 · 3 · 5 · 41;
9840 | 2 |
4920 | 2 |
2460 | 2 |
1230 | 2 |
615 | 3 |
205 | 5 |
41 | 41 |
1 |
НОД (19680; 9840) = 2 · 2 · 2 · 2 · 3 · 5 · 41 = 9840.
19680 : 9840 9840 : 9840
=
2 1
2 1
— неправильная, т.к. числитель 2 больше знаменателя 1.
Переведем её в смешанную дробь. Для этого разделим числитель на знаменатель. Результат деления — будет целой частью, остаток от деления — числителем, знаменатель — остается прежним. В нашем случае это:
2 1
=
2
Таким образом:
19680 9840
=
2