Сократите дробь 5(2/9)
Задача: сократить дробь
5
2 9
Решение:
5
2 9
=
5 ∙ 9 + 2 9
=
47 9
=
47 : 1 9 : 1
=
47 9
=
5
2 9
Ответ:
5
2 9
=
5
2 9
Подробное объяснение:
- Переведем смешанную дробь в неправильную:
- Найдём наибольший общий делитель (НОД)
- разложить 47 и 9 на простые множители;
- взять те множители, которые входят в разложение каждого из чисел;
- вычислить их произведение.
- Разделим числитель и знаменатель на НОД
- Переведем неправильную дробь в смешанную:
Для перевода в неправильную, необходимо целое число умножить на знаменатель и прибавить числитель, т.е.:
5
2 9
=
5 ∙ 9 + 2 9
=
47 9
НОД — это наибольшее число, на которое 47 и 9 делятся без остатка.
Для нахождения НОД (47;9) необходимо:
Отсюда:
47 = 47;
47 | 47 |
1 |
9 = 3 · 3;
9 | 3 |
3 | 3 |
1 |
НОД (47; 9) = 1 (Частный случай, т.к. 47 и 9 — взаимно простые числа).
47 : 1 9 : 1
=
47 9
47 9
— неправильная, т.к. числитель 47 больше знаменателя 9.
Переведем её в смешанную дробь. Для этого разделим числитель на знаменатель. Результат деления — будет целой частью, остаток от деления — числителем, знаменатель — остается прежним. В нашем случае это:
47 9
=
5
2 9
Таким образом:
5
2 9
=
5
2 9