Сравнение дробей 3/4 и 3/8
Задача: Сравнить дроби
3 4
и
3 8
Решение:
3 4
?
3 8
=
3 ∙ 2 8
?
3 ∙ 1 8
=
6 8
?
3 8
;
6 8
>
3 8
=
3 4
>
3 8
Ответ:
3 4
>
3 8
Подробное объяснение:
- Приведем дроби к общему знаменателю (найдем НОЗ):
- Найдем дополнительные множители для каждой дроби. Для этого НОЗ делим на каждый знаменатель:
- Сравним числители:
НОЗ — это наименьшее число которое без остатка делится на оба знаменателя. В нашем случае необходимо найти наименьшее число которое делится и на 4 и на 8. Это — 8.
8 : 4 = 2
8 : 8 = 1
Полученные множители перемножаем с числителями:
3 4
?
3 8
=
3 ∙ 2 8
?
3 ∙ 1 8
=
6 8
?
3 8
Сравнение двух дробей с одинаковыми знаменателями сводится к сравнению их числителей. В нашем случае 6 > 3, соответственно:
6 8
>
3 8
отсюда:
3 4
>
3 8
Смотрите также:
- Смотрите также
- Калькуляторы
- Последние примеры
Полезные материалы
Онлайн калькуляторы
Последние примеры на сравнение дробей
- Сравнить дроби 11 9и24 9
- Выполните сравнение дробей
5 14и1 14
- Выполните сравнение дробей
13 11и13 12
- Выполните сравнение дробей
100 100и98 100
- Что больше -3 25или-9 25?
- Сравнение дробей
12 14и14 12
- Что больше
3 12или5 16?
- Сравните дроби -22 7и-41 2
- Сравнить дроби 119 30и17 12

