Сравнение дробей 3/9 и 1(1/1)

Задача: Сравнить дроби
3 9
и
1
1 1
Решение:
3 9
?
1
1 1
=
3 9
?
1 ∙ 1 + 1 1
=
3 9
?
2 1
=
3 ∙ 1 9
?
2 ∙ 9 9
=
3 9
?
18 9
;
3 9
<
18 9
=
3 9
<
1
1 1
Ответ:
3 9
<
1
1 1

Подробное объяснение:

  1. Приведём смешанные дроби к неправильному виду:
  2. 3 9
    — обыкновенная дробь.
    1
    1 1
    — смешанная дробь.

    Для перевода в неправильную, необходимо целое число умножить на знаменатель и прибавить числитель, т.е.:

    1
    1 1
    =
    1 ∙ 1 + 1 1
    =
    2 1
  3. Приведем дроби к общему знаменателю (найдем НОЗ):
  4. НОЗ — это наименьшее число которое без остатка делится на оба знаменателя. В нашем случае необходимо найти наименьшее число которое делится и на 9 и на 1. Это — 9.

  5. Найдем дополнительные множители для каждой дроби. Для этого НОЗ делим на каждый знаменатель:
  6. 9 : 9 = 1

    9 : 1 = 9

    Полученные множители перемножаем с числителями:

    3 9
    ?
    2 1
    =
    3 ∙ 1 9
    ?
    2 ∙ 9 9
    =
    3 9
    ?
    18 9

  7. Сравним числители:
  8. Сравнение двух дробей с одинаковыми знаменателями сводится к сравнению их числителей. В нашем случае 3 < 18, соответственно:

    3 9
    <
    18 9

    отсюда:

3 9
<
1
1 1

Смотрите также:

Подписаться
Уведомить о
guest
0 комментариев
Межтекстовые Отзывы
Посмотреть все комментарии