Сравнение дробей 8/11 и 11/15
Задача: Сравнить дроби
8 11
и
11 15
Решение:
8 11
?
11 15
=
8 ∙ 15 165
?
11 ∙ 11 165
=
120 165
?
121 165
;
120 165
<
121 165
=
8 11
<
11 15
Ответ:
8 11
<
11 15
Подробное объяснение:
- Приведем дроби к общему знаменателю (найдем НОЗ):
- Найдем дополнительные множители для каждой дроби. Для этого НОЗ делим на каждый знаменатель:
- Сравним числители:
НОЗ — это наименьшее число которое без остатка делится на оба знаменателя. В нашем случае необходимо найти наименьшее число которое делится и на 11 и на 15. Это — 165.
165 : 11 = 15
165 : 15 = 11
Полученные множители перемножаем с числителями:
8 11
?
11 15
=
8 ∙ 15 165
?
11 ∙ 11 165
=
120 165
?
121 165
Сравнение двух дробей с одинаковыми знаменателями сводится к сравнению их числителей. В нашем случае 120 < 121, соответственно:
120 165
<
121 165
отсюда:
8 11
<
11 15
Смотрите также:
Полезные материалы
Онлайн калькуляторы
Последние примеры на сравнение дробей
- Сравнение двух дробей
21 33и17 33
- Выполните сравнение дробей
18 12и16 9
- Сравнение двух дробей
7 10и11 15
- Сравните дроби
9 13и13 9
- Сравнение двух дробей
3 8и8 12
- Сравнение двух дробей 323 30и37 19
- Что больше 12 7или9 11?
- Сравнение двух дробей
59 100и6 10
- Какая дробь больше
34 69или1 2