1(1/3) умножить на 5(1/4)

Задача: найти произведение дробей
1
1 3
и
5
1 4

.

Решение:
1
1 3
×
5
1 4
=
1 ∙ 3 + 1 3
×
5 ∙ 4 + 1 4
=
4 3
×
21 4
=
4 ∙ 21 3 ∙ 4
=
84 12
=
7 1
=
7
Ответ:
1
1 3
×
5
1 4
=
7

.

Подробное объяснение:

    Умножение смешанных дробей сводится в их преобразовании к неправильному виду и дальнейшему перемножению числителей и знаменателей.

  1. Приведём смешанные дроби к неправильному виду:
  2. 1
    1 3
    — смешанная дробь.

    Для перевода в неправильную, необходимо целое число умножить на знаменатель и прибавить числитель, т.е.:

    1
    1 3
    =
    1 ∙ 3 + 1 3
    =
    4 3
    5
    1 4
    — смешанная дробь.

    Для перевода в неправильную, необходимо целое число умножить на знаменатель и прибавить числитель, т.е.:

    5
    1 4
    =
    5 ∙ 4 + 1 4
    =
    21 4
  3. Перемножаем числители и знаменатели:
  4. 4 ∙ 21 3 ∙ 4
    =
    84 12
  5. Сократим дробь:
  6. В результате умножения получилась дробь
    84 12
    , которую можно сократить.
    Для этого необходимо найти наибольшее число, на которое делится и 84, и 12. В нашем случае это — 12. Разделим числитель и знаменатель на 12 и получим:
    84 : 12 12 : 12
    =
    7 1
    Подробнее о сокращении дробей, смотрите тут.
  7. Переведем неправильную дробь в смешанную:
  8. 7 1
    — неправильная, т.к. числитель 7 больше знаменателя 1.
    Переведем её в смешанную дробь. Для этого разделим числитель на знаменатель. Целая часть от деления — будет целой частью смешанной дроби, остаток от деления — числителем, знаменатель — останется прежним. В нашем случае это:
    7 1
    =
    7
    Подробнее о переводе в смешанную дробь, смотрите тут.
Таким образом:
1
1 3
×
5
1 4
=
7

Смотрите также:

  • Смотрите также
  • Калькуляторы
  • Последние примеры

Калькулятор умножения дробей

* Все поля обязательны
  • ×
Подписаться
Уведомить о
guest
0 комментариев
Межтекстовые Отзывы
Посмотреть все комментарии