1(2/3) умножить на 3(3/4)
Задача: найти произведение дробей
1
2 3
и
3
3 4
.
Решение:
1
2 3
×
3
3 4
=
1 ∙ 3 + 2 3
×
3 ∙ 4 + 3 4
=
5 3
×
15 4
=
5 ∙ 15 3 ∙ 4
=
75 12
=
25 4
=
6
1 4
Ответ:
1
2 3
×
3
3 4
=
6
1 4
.
Подробное объяснение:
- Приведём смешанные дроби к неправильному виду:
- Перемножаем числители и знаменатели:
- Сократим дробь:
- Переведем неправильную дробь в смешанную:
Умножение смешанных дробей сводится в их преобразовании к неправильному виду и дальнейшему перемножению числителей и знаменателей.
1
2 3
— смешанная дробь.
Для перевода в неправильную, необходимо целое число умножить на знаменатель и прибавить числитель, т.е.:
1
2 3
=
1 ∙ 3 + 2 3
=
5 3
3
3 4
— смешанная дробь.
Для перевода в неправильную, необходимо целое число умножить на знаменатель и прибавить числитель, т.е.:
3
3 4
=
3 ∙ 4 + 3 4
=
15 4
5 ∙ 15 3 ∙ 4
=
75 12
В результате умножения получилась дробь
75 12
, которую можно сократить.
Для этого необходимо найти наибольшее число, на которое делится и 75, и 12. В нашем случае это — 3. Разделим числитель и знаменатель на 3 и получим:
75 : 3 12 : 3
=
25 4
Подробнее о сокращении дробей, смотрите тут.
25 4
— неправильная, т.к. числитель 25 больше знаменателя 4.
Переведем её в смешанную дробь. Для этого разделим числитель на знаменатель. Целая часть от деления — будет целой частью смешанной дроби, остаток от деления — числителем, знаменатель — останется прежним. В нашем случае это:
25 4
=
6
1 4
Подробнее о переводе в смешанную дробь, смотрите тут.
Таким образом:
1
2 3
×
3
3 4
=
6
1 4