1(3/4) умножить на 4/5

Задача: найти произведение дробей
1
3 4
и
4 5

.

Решение:
1
3 4
×
4 5
=
1 ∙ 4 + 3 4
×
4 5
=
7 4
×
4 5
=
7 ∙ 4 4 ∙ 5
=
28 20
=
7 5
=
1
2 5
Ответ:
1
3 4
×
4 5
=
1
2 5

.

Подробное объяснение:

    Умножение смешанных дробей сводится в их преобразовании к неправильному виду и дальнейшему перемножению числителей и знаменателей.

  1. Приведём смешанные дроби к неправильному виду:
  2. 1
    3 4
    — смешанная дробь.

    Для перевода в неправильную, необходимо целое число умножить на знаменатель и прибавить числитель, т.е.:

    1
    3 4
    =
    1 ∙ 4 + 3 4
    =
    7 4
    4 5
    — обыкновенная дробь.
  3. Перемножаем числители и знаменатели:
  4. 7 ∙ 4 4 ∙ 5
    =
    28 20
  5. Сократим дробь:
  6. В результате умножения получилась дробь
    28 20
    , которую можно сократить.
    Для этого необходимо найти наибольшее число, на которое делится и 28, и 20. В нашем случае это — 4. Разделим числитель и знаменатель на 4 и получим:
    28 : 4 20 : 4
    =
    7 5
    Подробнее о сокращении дробей, смотрите тут.
  7. Переведем неправильную дробь в смешанную:
  8. 7 5
    — неправильная, т.к. числитель 7 больше знаменателя 5.
    Переведем её в смешанную дробь. Для этого разделим числитель на знаменатель. Целая часть от деления — будет целой частью смешанной дроби, остаток от деления — числителем, знаменатель — останется прежним. В нашем случае это:
    7 5
    =
    1
    2 5
    Подробнее о переводе в смешанную дробь, смотрите тут.
Таким образом:
1
3 4
×
4 5
=
1
2 5

Смотрите также:

  • Смотрите также
  • Калькуляторы
  • Последние примеры

Калькулятор умножения дробей

* Все поля обязательны
  • ×
Подписаться
Уведомить о
guest
0 комментариев
Межтекстовые Отзывы
Посмотреть все комментарии