1(1/6) умножить на 5/7

Задача: найти произведение дробей
1
1 6
и
5 7

.

Решение:
1
1 6
×
5 7
=
1 ∙ 6 + 1 6
×
5 7
=
7 6
×
5 7
=
7 ∙ 5 6 ∙ 7
=
35 42
=
5 6
Ответ:
1
1 6
×
5 7
=
5 6

.

Подробное объяснение:

    Умножение смешанных дробей сводится в их преобразовании к неправильному виду и дальнейшему перемножению числителей и знаменателей.

  1. Приведём смешанные дроби к неправильному виду:
  2. 1
    1 6
    — смешанная дробь.

    Для перевода в неправильную, необходимо целое число умножить на знаменатель и прибавить числитель, т.е.:

    1
    1 6
    =
    1 ∙ 6 + 1 6
    =
    7 6
    5 7
    — обыкновенная дробь.
  3. Перемножаем числители и знаменатели:
  4. 7 ∙ 5 6 ∙ 7
    =
    35 42
  5. Сократим дробь:
  6. В результате умножения получилась дробь
    35 42
    , которую можно сократить.
    Для этого необходимо найти наибольшее число, на которое делится и 35, и 42. В нашем случае это — 7. Разделим числитель и знаменатель на 7 и получим:
    35 : 7 42 : 7
    =
    5 6
    Подробнее о сокращении дробей, смотрите тут.
Таким образом:
1
1 6
×
5 7
=
5 6

Смотрите также:

  • Смотрите также
  • Калькуляторы
  • Последние примеры

Калькулятор умножения дробей

* Все поля обязательны
  • ×
Подписаться
Уведомить о
guest
0 комментариев
Межтекстовые Отзывы
Посмотреть все комментарии