2(2/7) умножить на 1/2

Задача: найти произведение дробей
2
2 7
и
1 2

.

Решение:
2
2 7
×
1 2
=
2 ∙ 7 + 2 7
×
1 2
=
16 7
×
1 2
=
16 ∙ 1 7 ∙ 2
=
16 14
=
8 7
=
1
1 7
Ответ:
2
2 7
×
1 2
=
1
1 7

.

Подробное объяснение:

    Умножение смешанных дробей сводится в их преобразовании к неправильному виду и дальнейшему перемножению числителей и знаменателей.

  1. Приведём смешанные дроби к неправильному виду:
  2. 2
    2 7
    — смешанная дробь.

    Для перевода в неправильную, необходимо целое число умножить на знаменатель и прибавить числитель, т.е.:

    2
    2 7
    =
    2 ∙ 7 + 2 7
    =
    16 7
    1 2
    — обыкновенная дробь.
  3. Перемножаем числители и знаменатели:
  4. 16 ∙ 1 7 ∙ 2
    =
    16 14
  5. Сократим дробь:
  6. В результате умножения получилась дробь
    16 14
    , которую можно сократить.
    Для этого необходимо найти наибольшее число, на которое делится и 16, и 14. В нашем случае это — 2. Разделим числитель и знаменатель на 2 и получим:
    16 : 2 14 : 2
    =
    8 7
    Подробнее о сокращении дробей, смотрите тут.
  7. Переведем неправильную дробь в смешанную:
  8. 8 7
    — неправильная, т.к. числитель 8 больше знаменателя 7.
    Переведем её в смешанную дробь. Для этого разделим числитель на знаменатель. Целая часть от деления — будет целой частью смешанной дроби, остаток от деления — числителем, знаменатель — останется прежним. В нашем случае это:
    8 7
    =
    1
    1 7
    Подробнее о переводе в смешанную дробь, смотрите тут.
Таким образом:
2
2 7
×
1 2
=
1
1 7

Смотрите также:

  • Смотрите также
  • Калькуляторы
  • Последние примеры

Калькулятор умножения дробей

* Все поля обязательны
  • ×
Подписаться
Уведомить о
guest
0 комментариев
Межтекстовые Отзывы
Посмотреть все комментарии