Деление дробей 2(14/16) ÷ 1(3/8)
Задача: разделить дробь
2
14 16
на
1
3 8
.
Решение:
2
14 16
÷
1
3 8
=
2 ∙ 16 + 14 16
÷
1 ∙ 8 + 3 8
=
46 16
÷
11 8
=
46 16
×
8 11
=
46 ∙ 8 16 ∙ 11
=
368 176
=
23 11
=
2
1 11
Ответ:
2
14 16
÷
1
3 8
=
2
1 11
.
Подробное объяснение:
- Приведём смешанные дроби к неправильному виду:
- Переворачиваем вторую дробь:
- Перемножаем числители и знаменатели:
- Сократим дробь:
- Переведем неправильную дробь в смешанную:
Деление смешанных дробей сводится в их преобразовании к неправильному виду, и умножению первой дроби на перевернутую вторую.
2
14 16
— смешанная дробь.
Для перевода в неправильную, необходимо целое число умножить на знаменатель и прибавить числитель, т.е.:
2
14 16
=
2 ∙ 16 + 14 16
=
46 16
1
3 8
— смешанная дробь.
Для перевода в неправильную, необходимо целое число умножить на знаменатель и прибавить числитель, т.е.:
1
3 8
=
1 ∙ 8 + 3 8
=
11 8
46 16
÷
11 8
=
46 16
×
8 11
46 ∙ 8 16 ∙ 11
=
368 176
В результате деления получилась дробь
368 176
, которую можно сократить.
Для этого необходимо найти наибольшее число, на которое делится и 368, и 176. В нашем случае это — 16. Разделим числитель и знаменатель на 16 и получим:
368 : 16 176 : 16
=
23 11
Подробнее о сокращении дробей, смотрите здесь.
23 11
— неправильная, т.к. числитель 23 больше знаменателя 11.
Переведем её в смешанную дробь. Для этого разделим числитель на знаменатель. Целая часть от деления — будет целой частью смешанной дроби, остаток от деления — числителем, знаменатель — останется прежним. В нашем случае это:
23 11
=
2
1 11
Подробнее о переводе в смешанную дробь, смотрите тут.
Таким образом:
2
14 16
÷
1
3 8
=
2
1 11