Сложение дробей 1(1/24) + 11(1/5)
Задача: сложить дроби
1
1 24
и
11
1 5
.
Решение:
1
1 24
+
11
1 5
=
1 ∙ 24 + 1 24
+
11 ∙ 5 + 1 5
=
25 24
+
56 5
=
25 ∙ 5 120
+
56 ∙ 24 120
=
125 120
+
1344 120
=
125 + 1344 120
=
1469 120
12
29 120
Ответ:
1
1 24
+
11
1 5
=
12
29 120
.
Подробное объяснение:
- Приведём смешанные дроби к неправильному виду:
- Найдём наименьший общий знаменатель (НОЗ):
- Вычислим дополнительные множители для каждой дроби. Для этого НОЗ разделим на каждый знаменатель:
- Приведем дроби к новому знаменателю. Для этого полученные множители перемножаем с числителями, а знаменателем обоих дробей станет найденный НОЗ:
- Складываем числители:
- Переведем неправильную дробь в смешанную:
Сложение дробей с разными знаменателями, сводится в их преобразовании к общему знаменателю, и дальнейшему сложению числителей. Для этого:
1
1 24
— смешанная дробь.
Для перевода в неправильную, необходимо целое число умножить на знаменатель и прибавить числитель, т.е.:
1
1 24
=
1 ∙ 24 + 1 24
=
25 24
11
1 5
— смешанная дробь.
Для перевода в неправильную, необходимо целое число умножить на знаменатель и прибавить числитель, т.е.:
11
1 5
=
11 ∙ 5 + 1 5
=
56 5
НОЗ — это наименьшее число, которое без остатка делится на оба знаменателя. В нашем случае необходимо найти наименьшее число, которое делится и на 24 и на 5. Это — 120.
120 : 24 = 5
120 : 5 = 24
25 24
+
56 5
=
25 ∙ 5 120
+
56 ∙ 24 120
=
125 120
+
1344 120
125 + 1344 120
=
1469 120
1469 120
— неправильная, т.к. 1469 больше 120.
Переведем её в смешанную дробь. Для этого разделим числитель на знаменатель. Целая часть от деления — будет целой частью смешанной дроби, остаток от деления — числителем, знаменатель — останется прежним. В нашем случае это:
1469 120
=
12
29 120
Подробнее о переводе в смешанную дробь, смотрите тут.
Таким образом:
1
1 24
+
11
1 5
=
12
29 120