Сложение дробей 2/4 + 1/6

Задача: сложить дроби
2 4
и
1 6

.

Решение:
2 4
+
1 6
=
2 ∙ 3 12
+
1 ∙ 2 12
=
6 12
+
2 12
=
6 + 2 12
=
8 12
=
2 3
Ответ:
2 4
+
1 6
=
2 3

.

Подробное объяснение:

    Сложение дробей с разными знаменателями, сводится в их преобразовании к общему знаменателю, и дальнейшему сложению числителей. Для этого:

  1. Найдём наименьший общий знаменатель (НОЗ):
  2. НОЗ — это наименьшее число, которое без остатка делится на оба знаменателя. В нашем случае необходимо найти наименьшее число, которое делится и на 4 и на 6. Это — 12.

  3. Вычислим дополнительные множители для каждой дроби. Для этого НОЗ разделим на каждый знаменатель:
  4. 12 : 4 = 3

    12 : 6 = 2

  5. Приведем дроби к новому знаменателю. Для этого полученные множители перемножаем с числителями, а знаменателем обоих дробей станет найденный НОЗ:
  6. 2 ∙ 3 12
    +
    1 ∙ 2 12
    =
    6 12
    +
    2 12

  7. Складываем числители:
  8. 6 + 2 12
    =
    8 12
  9. Сократим дробь:
  10. В результате сложения получилась дробь
    8 12
    , которую можно сократить.
    Для этого необходимо найти наибольшее число, на которое делится и 8, и на 12. В нашем случае это — 4. Разделим числитель и знаменатель на 4 и получим:
    8 12
    =
    2 3
    Подробнее о сокращении дробей, смотрите тут.
Таким образом:
2 4
+
1 6
=
2 3

Смотрите также:

  • Смотрите также
  • Калькуляторы
  • Последние примеры

Калькулятор сложения дробей

* Все поля обязательны
  • +
Подписаться
Уведомить о
guest
0 комментариев
Межтекстовые Отзывы
Посмотреть все комментарии