Сложение дробей 8/11 + 4/1

Задача: сложить дроби
8 11
и
4 1

.

Решение:
8 11
+
4 1
=
8 ∙ 1 11
+
4 ∙ 11 11
=
8 11
+
44 11
=
8 + 44 11
=
52 11
=
4
8 11
Ответ:
8 11
+
4 1
=
4
8 11

.

Подробное объяснение:

    Сложение дробей с разными знаменателями, сводится в их преобразовании к общему знаменателю, и дальнейшему сложению числителей. Для этого:

  1. Найдём наименьший общий знаменатель (НОЗ):
  2. НОЗ — это наименьшее число, которое без остатка делится на оба знаменателя. В нашем случае необходимо найти наименьшее число, которое делится и на 11 и на 1. Это — 11.

  3. Вычислим дополнительные множители для каждой дроби. Для этого НОЗ разделим на каждый знаменатель:
  4. 11 : 11 = 1

    11 : 1 = 11

  5. Приведем дроби к новому знаменателю. Для этого полученные множители перемножаем с числителями, а знаменателем обоих дробей станет найденный НОЗ:
  6. 8 ∙ 1 11
    +
    4 ∙ 11 11
    =
    8 11
    +
    44 11

  7. Складываем числители:
  8. 8 + 44 11
    =
    52 11
  9. Переведем неправильную дробь в смешанную:
  10. 52 11
    — неправильная дробь, т.к. 52 больше 11.
    Переведем её в смешанную дробь. Для этого разделим числитель на знаменатель. Целая часть от деления — будет целой частью смешанной дроби, остаток от деления — числителем, знаменатель — останется прежним. В нашем случае это:
    52 11
    =
    4
    8 11
    Подробнее о переводе в смешанную дробь, смотрите тут.
Таким образом:
8 11
+
4 1
=
4
8 11

Смотрите также:

  • Смотрите также
  • Калькуляторы
  • Последние примеры

Калькулятор сложения дробей

* Все поля обязательны
  • +
Подписаться
Уведомить о
guest
0 комментариев
Межтекстовые Отзывы
Посмотреть все комментарии