Сложение дробей 3(1/6) + 7(6/7)
Задача: сложить дроби
3
1 6
и
7
6 7
.
Решение:
3
1 6
+
7
6 7
=
3 ∙ 6 + 1 6
+
7 ∙ 7 + 6 7
=
19 6
+
55 7
=
19 ∙ 7 42
+
55 ∙ 6 42
=
133 42
+
330 42
=
133 + 330 42
=
463 42
11
1 42
Ответ:
3
1 6
+
7
6 7
=
11
1 42
.
Подробное объяснение:
- Приведём смешанные дроби к неправильному виду:
- Найдём наименьший общий знаменатель (НОЗ):
- Вычислим дополнительные множители для каждой дроби. Для этого НОЗ разделим на каждый знаменатель:
- Приведем дроби к новому знаменателю. Для этого полученные множители перемножаем с числителями, а знаменателем обоих дробей станет найденный НОЗ:
- Складываем числители:
- Переведем неправильную дробь в смешанную:
Сложение дробей с разными знаменателями, сводится в их преобразовании к общему знаменателю, и дальнейшему сложению числителей. Для этого:
3
1 6
— смешанная дробь.
Для перевода в неправильную, необходимо целое число умножить на знаменатель и прибавить числитель, т.е.:
3
1 6
=
3 ∙ 6 + 1 6
=
19 6
7
6 7
— смешанная дробь.
Для перевода в неправильную, необходимо целое число умножить на знаменатель и прибавить числитель, т.е.:
7
6 7
=
7 ∙ 7 + 6 7
=
55 7
НОЗ — это наименьшее число, которое без остатка делится на оба знаменателя. В нашем случае необходимо найти наименьшее число, которое делится и на 6 и на 7. Это — 42.
42 : 6 = 7
42 : 7 = 6
19 6
+
55 7
=
19 ∙ 7 42
+
55 ∙ 6 42
=
133 42
+
330 42
133 + 330 42
=
463 42
463 42
— неправильная, т.к. 463 больше 42.
Переведем её в смешанную дробь. Для этого разделим числитель на знаменатель. Целая часть от деления — будет целой частью смешанной дроби, остаток от деления — числителем, знаменатель — останется прежним. В нашем случае это:
463 42
=
11
1 42
Подробнее о переводе в смешанную дробь, смотрите тут.
Таким образом:
3
1 6
+
7
6 7
=
11
1 42