Сложение дробей 68/11 + 4/5

Задача: сложить дроби
68 11
и
4 5

.

Решение:
68 11
+
4 5
=
68 ∙ 5 55
+
4 ∙ 11 55
=
340 55
+
44 55
=
340 + 44 55
=
384 55
=
6
54 55
Ответ:
68 11
+
4 5
=
6
54 55

.

Подробное объяснение:

    Сложение дробей с разными знаменателями, сводится в их преобразовании к общему знаменателю, и дальнейшему сложению числителей. Для этого:

  1. Найдём наименьший общий знаменатель (НОЗ):
  2. НОЗ — это наименьшее число, которое без остатка делится на оба знаменателя. В нашем случае необходимо найти наименьшее число, которое делится и на 11 и на 5. Это — 55.

  3. Вычислим дополнительные множители для каждой дроби. Для этого НОЗ разделим на каждый знаменатель:
  4. 55 : 11 = 5

    55 : 5 = 11

  5. Приведем дроби к новому знаменателю. Для этого полученные множители перемножаем с числителями, а знаменателем обоих дробей станет найденный НОЗ:
  6. 68 ∙ 5 55
    +
    4 ∙ 11 55
    =
    340 55
    +
    44 55

  7. Складываем числители:
  8. 340 + 44 55
    =
    384 55
  9. Переведем неправильную дробь в смешанную:
  10. 384 55
    — неправильная дробь, т.к. 384 больше 55.
    Переведем её в смешанную дробь. Для этого разделим числитель на знаменатель. Целая часть от деления — будет целой частью смешанной дроби, остаток от деления — числителем, знаменатель — останется прежним. В нашем случае это:
    384 55
    =
    6
    54 55
    Подробнее о переводе в смешанную дробь, смотрите тут.
Таким образом:
68 11
+
4 5
=
6
54 55

Смотрите также:

  • Смотрите также
  • Калькуляторы
  • Последние примеры

Калькулятор сложения дробей

* Все поля обязательны
  • +
Подписаться
Уведомить о
guest
0 комментариев
Межтекстовые Отзывы
Посмотреть все комментарии