Сократите дробь 20(30/50)

Задача: сократить дробь
20
30 50
Решение:
20
30 50
=
20 ∙ 50 + 30 50
=
1030 50
=
1030 : 10 50 : 10
=
103 5
=
20
3 5
Ответ:
20
30 50
=
20
3 5

Подробное объяснение:

  1. Переведем смешанную дробь в неправильную:
  2. Для перевода в неправильную, необходимо целое число умножить на знаменатель и прибавить числитель, т.е.:
    20
    30 50
    =
    20 ∙ 50 + 30 50
    =
    1030 50

  3. Найдём наибольший общий делитель (НОД)
  4. НОД — это наибольшее число, на которое 1030 и 50 делятся без остатка.

    Для нахождения НОД (1030;50) необходимо:

    • разложить 1030 и 50 на простые множители;
    • взять те множители, которые входят в разложение каждого из чисел;
    • вычислить их произведение.

    Отсюда:

    1030 = 2 · 5 · 103;

    1030 2
    515 5
    103 103
    1

    50 = 2 · 5 · 5;

    50 2
    25 5
    5 5
    1
    НОД (1030; 50) = 2 · 5 = 10.

  5. Разделим числитель и знаменатель на НОД
  6. 1030 : 10 50 : 10
    =
    103 5

  7. Переведем неправильную дробь в смешанную:
  8. 103 5
    — неправильная, т.к. числитель 103 больше знаменателя 5.
    Переведем её в смешанную дробь. Для этого разделим числитель на знаменатель. Результат деления — будет целой частью, остаток от деления — числителем, знаменатель — остается прежним. В нашем случае это:
    103 5
    =
    20
    3 5
Таким образом:
20
30 50
=
20
3 5

Смотрите также:

Подписаться
Уведомить о
guest
0 комментариев
Межтекстовые Отзывы
Посмотреть все комментарии