Сравнение дробей 1(2/7) и 9/11
Задача: Сравнить дроби
1
2 7
и
9 11
Решение:
1
2 7
?
9 11
=
1 ∙ 7 + 2 7
?
9 11
=
9 7
?
9 11
=
9 ∙ 11 77
?
9 ∙ 7 77
=
99 77
?
63 77
;
99 77
>
63 77
=
1
2 7
>
9 11
Ответ:
1
2 7
>
9 11
Подробное объяснение:
- Приведём смешанные дроби к неправильному виду:
- Приведем дроби к общему знаменателю (найдем НОЗ):
- Найдем дополнительные множители для каждой дроби. Для этого НОЗ делим на каждый знаменатель:
- Сравним числители:
1
2 7
— смешанная дробь.
Для перевода в неправильную, необходимо целое число умножить на знаменатель и прибавить числитель, т.е.:
1
2 7
=
1 ∙ 7 + 2 7
=
9 7
9 11
— обыкновенная дробь.
НОЗ — это наименьшее число которое без остатка делится на оба знаменателя. В нашем случае необходимо найти наименьшее число которое делится и на 7 и на 11. Это — 77.
77 : 7 = 11
77 : 11 = 7
Полученные множители перемножаем с числителями:
9 7
?
9 11
=
9 ∙ 11 77
?
9 ∙ 7 77
=
99 77
?
63 77
Сравнение двух дробей с одинаковыми знаменателями сводится к сравнению их числителей. В нашем случае 99 > 63, соответственно:
99 77
>
63 77
отсюда:
1
2 7
>
9 11