Сравнение дробей 2/7 и 7/12
Задача: Сравнить дроби
2 7
и
7 12
Решение:
2 7
?
7 12
=
2 ∙ 12 84
?
7 ∙ 7 84
=
24 84
?
49 84
;
24 84
<
49 84
=
2 7
<
7 12
Ответ:
2 7
<
7 12
Подробное объяснение:
- Приведем дроби к общему знаменателю (найдем НОЗ):
- Найдем дополнительные множители для каждой дроби. Для этого НОЗ делим на каждый знаменатель:
- Сравним числители:
НОЗ — это наименьшее число которое без остатка делится на оба знаменателя. В нашем случае необходимо найти наименьшее число которое делится и на 7 и на 12. Это — 84.
84 : 7 = 12
84 : 12 = 7
Полученные множители перемножаем с числителями:
2 7
?
7 12
=
2 ∙ 12 84
?
7 ∙ 7 84
=
24 84
?
49 84
Сравнение двух дробей с одинаковыми знаменателями сводится к сравнению их числителей. В нашем случае 24 < 49, соответственно:
24 84
<
49 84
отсюда:
2 7
<
7 12
Смотрите также:
- Смотрите также
- Калькуляторы
- Последние примеры
Полезные материалы
Онлайн калькуляторы
Последние примеры на сравнение дробей
- Выполните сравнение дробей 25 8и25 9
- Сравнение дробей
4 13и4 15
- Выполните сравнение дробей
09 0и5 0
- Сравните дроби
4 19и4 5
- Сравнить дроби
9 5и3 5
- Какая дробь больше
21 104или-11 36
- Какая дробь больше
57 90или17 45
- Сравнение двух дробей
21 45и151 26
- Выполните сравнение дробей
5 8и6 11

