Сравнение дробей 3/8 и 1/7
Задача: Сравнить дроби
3 8
и
1 7
Решение:
3 8
?
1 7
=
3 ∙ 7 56
?
1 ∙ 8 56
=
21 56
?
8 56
;
21 56
>
8 56
=
3 8
>
1 7
Ответ:
3 8
>
1 7
Подробное объяснение:
- Приведем дроби к общему знаменателю (найдем НОЗ):
- Найдем дополнительные множители для каждой дроби. Для этого НОЗ делим на каждый знаменатель:
- Сравним числители:
НОЗ — это наименьшее число которое без остатка делится на оба знаменателя. В нашем случае необходимо найти наименьшее число которое делится и на 8 и на 7. Это — 56.
56 : 8 = 7
56 : 7 = 8
Полученные множители перемножаем с числителями:
3 8
?
1 7
=
3 ∙ 7 56
?
1 ∙ 8 56
=
21 56
?
8 56
Сравнение двух дробей с одинаковыми знаменателями сводится к сравнению их числителей. В нашем случае 21 > 8, соответственно:
21 56
>
8 56
отсюда:
3 8
>
1 7
Смотрите также:
- Смотрите также
- Калькуляторы
- Последние примеры
Полезные материалы
Онлайн калькуляторы
Последние примеры на сравнение дробей
- Выполните сравнение дробей
5 6и3 100
- Сравнение двух дробей
8 11и3 11
- Сравнить дроби
3 5и55 100
- Выполните сравнение дробей
11 18и19 19
- Выполните сравнение дробей
29 11и25 9
- Какая дробь больше
28 12или60 12
- Выполните сравнение дробей
5 8и9 16
- Сравнение дробей
12 32и6 16
- Сравнить дроби
11 7и11 12