Сравнение дробей 4(1/5) и 3(7/4)

Задача: Сравнить дроби
4
1 5
и
3
7 4
Решение:
4
1 5
?
3
7 4
=
4 ∙ 5 + 1 5
?
3 ∙ 4 + 7 4
=
21 5
?
19 4
=
21 ∙ 4 20
?
19 ∙ 5 20
=
84 20
?
95 20
;
84 20
<
95 20
=
4
1 5
<
3
7 4
Ответ:
4
1 5
<
3
7 4

Подробное объяснение:

  1. Приведём смешанные дроби к неправильному виду:
  2. 4
    1 5
    — смешанная дробь.

    Для перевода в неправильную, необходимо целое число умножить на знаменатель и прибавить числитель, т.е.:

    4
    1 5
    =
    4 ∙ 5 + 1 5
    =
    21 5
    3
    7 4
    — смешанная дробь.

    Для перевода в неправильную, необходимо целое число умножить на знаменатель и прибавить числитель, т.е.:

    3
    7 4
    =
    3 ∙ 4 + 7 4
    =
    19 4
  3. Приведем дроби к общему знаменателю (найдем НОЗ):
  4. НОЗ — это наименьшее число которое без остатка делится на оба знаменателя. В нашем случае необходимо найти наименьшее число которое делится и на 5 и на 4. Это — 20.

  5. Найдем дополнительные множители для каждой дроби. Для этого НОЗ делим на каждый знаменатель:
  6. 20 : 5 = 4

    20 : 4 = 5

    Полученные множители перемножаем с числителями:

    21 5
    ?
    19 4
    =
    21 ∙ 4 20
    ?
    19 ∙ 5 20
    =
    84 20
    ?
    95 20

  7. Сравним числители:
  8. Сравнение двух дробей с одинаковыми знаменателями сводится к сравнению их числителей. В нашем случае 84 < 95, соответственно:

    84 20
    <
    95 20

    отсюда:

4
1 5
<
3
7 4

Смотрите также:

Подписаться
Уведомить о
guest
0 комментариев
Межтекстовые Отзывы
Посмотреть все комментарии