Сравнение дробей 7/12 и 1(1/1)

Задача: Сравнить дроби
7 12
и
1
1 1
Решение:
7 12
?
1
1 1
=
7 12
?
1 ∙ 1 + 1 1
=
7 12
?
2 1
=
7 ∙ 1 12
?
2 ∙ 12 12
=
7 12
?
24 12
;
7 12
<
24 12
=
7 12
<
1
1 1
Ответ:
7 12
<
1
1 1

Подробное объяснение:

  1. Приведём смешанные дроби к неправильному виду:
  2. 7 12
    — обыкновенная дробь.
    1
    1 1
    — смешанная дробь.

    Для перевода в неправильную, необходимо целое число умножить на знаменатель и прибавить числитель, т.е.:

    1
    1 1
    =
    1 ∙ 1 + 1 1
    =
    2 1
  3. Приведем дроби к общему знаменателю (найдем НОЗ):
  4. НОЗ — это наименьшее число которое без остатка делится на оба знаменателя. В нашем случае необходимо найти наименьшее число которое делится и на 12 и на 1. Это — 12.

  5. Найдем дополнительные множители для каждой дроби. Для этого НОЗ делим на каждый знаменатель:
  6. 12 : 12 = 1

    12 : 1 = 12

    Полученные множители перемножаем с числителями:

    7 12
    ?
    2 1
    =
    7 ∙ 1 12
    ?
    2 ∙ 12 12
    =
    7 12
    ?
    24 12

  7. Сравним числители:
  8. Сравнение двух дробей с одинаковыми знаменателями сводится к сравнению их числителей. В нашем случае 7 < 24, соответственно:

    7 12
    <
    24 12

    отсюда:

7 12
<
1
1 1

Смотрите также:

Подписаться
Уведомить о
guest
0 комментариев
Межтекстовые Отзывы
Посмотреть все комментарии