10(4/5) умножить на 4(3/8)
Задача: найти произведение дробей
10
4 5
и
4
3 8
.
Решение:
10
4 5
×
4
3 8
=
10 ∙ 5 + 4 5
×
4 ∙ 8 + 3 8
=
54 5
×
35 8
=
54 ∙ 35 5 ∙ 8
=
1890 40
=
189 4
=
47
1 4
Ответ:
10
4 5
×
4
3 8
=
47
1 4
.
Подробное объяснение:
- Приведём смешанные дроби к неправильному виду:
- Перемножаем числители и знаменатели:
- Сократим дробь:
- Переведем неправильную дробь в смешанную:
Умножение смешанных дробей сводится в их преобразовании к неправильному виду и дальнейшему перемножению числителей и знаменателей.
10
4 5
— смешанная дробь.
Для перевода в неправильную, необходимо целое число умножить на знаменатель и прибавить числитель, т.е.:
10
4 5
=
10 ∙ 5 + 4 5
=
54 5
4
3 8
— смешанная дробь.
Для перевода в неправильную, необходимо целое число умножить на знаменатель и прибавить числитель, т.е.:
4
3 8
=
4 ∙ 8 + 3 8
=
35 8
54 ∙ 35 5 ∙ 8
=
1890 40
В результате умножения получилась дробь
1890 40
, которую можно сократить.
Для этого необходимо найти наибольшее число, на которое делится и 1890, и 40. В нашем случае это — 10. Разделим числитель и знаменатель на 10 и получим:
1890 : 10 40 : 10
=
189 4
Подробнее о сокращении дробей, смотрите тут.
189 4
— неправильная, т.к. числитель 189 больше знаменателя 4.
Переведем её в смешанную дробь. Для этого разделим числитель на знаменатель. Целая часть от деления — будет целой частью смешанной дроби, остаток от деления — числителем, знаменатель — останется прежним. В нашем случае это:
189 4
=
47
1 4
Подробнее о переводе в смешанную дробь, смотрите тут.
Таким образом:
10
4 5
×
4
3 8
=
47
1 4