2(6/16) умножить на 2(2/16)
Задача: найти произведение дробей
2
6 16
и
2
2 16
.
Решение:
2
6 16
×
2
2 16
=
2 ∙ 16 + 6 16
×
2 ∙ 16 + 2 16
=
38 16
×
34 16
=
38 ∙ 34 16 ∙ 16
=
1292 256
=
323 64
=
5
3 64
Ответ:
2
6 16
×
2
2 16
=
5
3 64
.
Подробное объяснение:
- Приведём смешанные дроби к неправильному виду:
- Перемножаем числители и знаменатели:
- Сократим дробь:
- Переведем неправильную дробь в смешанную:
Умножение смешанных дробей сводится в их преобразовании к неправильному виду и дальнейшему перемножению числителей и знаменателей.
2
6 16
— смешанная дробь.
Для перевода в неправильную, необходимо целое число умножить на знаменатель и прибавить числитель, т.е.:
2
6 16
=
2 ∙ 16 + 6 16
=
38 16
2
2 16
— смешанная дробь.
Для перевода в неправильную, необходимо целое число умножить на знаменатель и прибавить числитель, т.е.:
2
2 16
=
2 ∙ 16 + 2 16
=
34 16
38 ∙ 34 16 ∙ 16
=
1292 256
В результате умножения получилась дробь
1292 256
, которую можно сократить.
Для этого необходимо найти наибольшее число, на которое делится и 1292, и 256. В нашем случае это — 4. Разделим числитель и знаменатель на 4 и получим:
1292 : 4 256 : 4
=
323 64
Подробнее о сокращении дробей, смотрите тут.
323 64
— неправильная, т.к. числитель 323 больше знаменателя 64.
Переведем её в смешанную дробь. Для этого разделим числитель на знаменатель. Целая часть от деления — будет целой частью смешанной дроби, остаток от деления — числителем, знаменатель — останется прежним. В нашем случае это:
323 64
=
5
3 64
Подробнее о переводе в смешанную дробь, смотрите тут.
Таким образом:
2
6 16
×
2
2 16
=
5
3 64