5/1 умножить на 2(1/15)
Задача: найти произведение дробей
5 1
и
2
1 15
.
Решение:
5 1
×
2
1 15
=
5 1
×
2 ∙ 15 + 1 15
=
5 1
×
31 15
=
5 ∙ 31 1 ∙ 15
=
155 15
=
31 3
=
10
1 3
Ответ:
5 1
×
2
1 15
=
10
1 3
.
Подробное объяснение:
- Приведём смешанные дроби к неправильному виду:
- Перемножаем числители и знаменатели:
- Сократим дробь:
- Переведем неправильную дробь в смешанную:
Умножение смешанных дробей сводится в их преобразовании к неправильному виду и дальнейшему перемножению числителей и знаменателей.
5 1
— неправильная дробь.
2
1 15
— смешанная дробь.
Для перевода в неправильную, необходимо целое число умножить на знаменатель и прибавить числитель, т.е.:
2
1 15
=
2 ∙ 15 + 1 15
=
31 15
5 ∙ 31 1 ∙ 15
=
155 15
В результате умножения получилась дробь
155 15
, которую можно сократить.
Для этого необходимо найти наибольшее число, на которое делится и 155, и 15. В нашем случае это — 5. Разделим числитель и знаменатель на 5 и получим:
155 : 5 15 : 5
=
31 3
Подробнее о сокращении дробей, смотрите тут.
31 3
— неправильная, т.к. числитель 31 больше знаменателя 3.
Переведем её в смешанную дробь. Для этого разделим числитель на знаменатель. Целая часть от деления — будет целой частью смешанной дроби, остаток от деления — числителем, знаменатель — останется прежним. В нашем случае это:
31 3
=
10
1 3
Подробнее о переводе в смешанную дробь, смотрите тут.
Таким образом:
5 1
×
2
1 15
=
10
1 3