Вычитание дробей 3(1/14) — 1(3/14)
Задача: вычислите
3
1 14
минус
1
3 14
.
Решение:
3
1 14
—
1
3 14
=
3 ∙ 14 + 1 14
—
1 ∙ 14 + 3 14
=
43 14
—
17 14
=
43 — 17 14
=
26 14
=
13 7
=
1
6 7
Ответ:
3
1 14
—
1
3 14
=
1
6 7
.
Подробное объяснение:
- Приведём смешанные дроби к неправильному виду:
- Произведем вычитание одного числителя из другого:
- Сократим дробь:
- Переведем неправильную дробь в смешанную:
Вычитание смешанных дробей с одинаковыми знаменателями, сводится в их преобразовании к неправильному виду, и дальнейшему вычитанию числителей. Для этого:
3
1 14
— смешанная дробь.
Для перевода в неправильную, необходимо целое число умножить на знаменатель и прибавить числитель, т.е.:
3
1 14
=
3 ∙ 14 + 1 14
=
43 14
1
3 14
— смешанная дробь.
Для перевода в неправильную, необходимо целое число умножить на знаменатель и прибавить числитель, т.е.:
1
3 14
=
1 ∙ 14 + 3 14
=
17 14
43 — 17 14
=
26 14
В результате вычитания получилась дробь
26 14
, которую можно сократить.
Для этого необходимо найти наибольшее число, на которое делится и 26, и 14. В нашем случае это — 2. Разделим числитель и знаменатель на 2 и получим:
26 : 2 14 : 2
=
13 7
Подробнее о сокращении дробей, смотрите тут.
13 7
— неправильная, т.к. числитель 13 больше знаменателя 7.
Переведем её в смешанную дробь. Для этого разделим числитель на знаменатель. Целая часть от деления — будет целой частью смешанной дроби, остаток от деления — числителем, знаменатель — останется прежним. В нашем случае это:
13 7
=
1
6 7
Подробнее о переводе в смешанную дробь, смотрите тут.
Таким образом:
3
1 14
—
1
3 14
=
1
6 7
Смотрите также:
- Смотрите также
- Калькуляторы
- Последние примеры