Вычитание дробей 6(4/5) — 3(5/6)
Задача: вычислите
6
4 5
минус
3
5 6
.
Решение:
6
4 5
—
3
5 6
=
6 ∙ 5 + 4 5
—
3 ∙ 6 + 5 6
=
34 5
—
23 6
=
34 ∙ 6 30
—
23 ∙ 5 30
=
204 30
—
115 30
=
204 — 115 30
=
89 30
2
29 30
Ответ:
6
4 5
—
3
5 6
=
2
29 30
.
Подробное объяснение:
- Приведём смешанные дроби к неправильному виду:
- Найдём наименьший общий знаменатель (НОЗ):
- Вычислим дополнительные множители для каждой дроби. Для этого НОЗ разделим на каждый знаменатель:
- Приведем дроби к новому знаменателю. Для этого полученные множители перемножаем с числителями, а знаменателем обоих дробей станет найденный НОЗ:
- Вычитаем числители:
- Переведем неправильную дробь в смешанную:
Вычитание дробей с разными знаменателями, сводится в их преобразовании к общему знаменателю, и дальнейшему вычитанию числителей. Для этого:
6
4 5
— смешанная дробь.
Для перевода в неправильную, необходимо целое число умножить на знаменатель и прибавить числитель, т.е.:
6
4 5
=
6 ∙ 5 + 4 5
=
34 5
3
5 6
— смешанная дробь.
Для перевода в неправильную, необходимо целое число умножить на знаменатель и прибавить числитель, т.е.:
3
5 6
=
3 ∙ 6 + 5 6
=
23 6
НОЗ — это наименьшее число, которое без остатка делится на оба знаменателя. В нашем случае необходимо найти наименьшее число, которое делится и на 5, и на 6. Это — 30.
30 : 5 = 6
30 : 6 = 5
34 5
—
23 6
=
34 ∙ 6 30
—
23 ∙ 5 30
=
204 30
—
115 30
204 — 115 30
=
89 30
89 30
— неправильная, т.к. 89 больше 30.
Переведем её в смешанную дробь. Для этого разделим числитель на знаменатель. Целая часть от деления — будет целой частью смешанной дроби, остаток от деления — числителем, знаменатель — останется прежним. В нашем случае это:
89 30
=
2
29 30
Подробнее о переводе в смешанную дробь, смотрите тут.
Таким образом:
6
4 5
—
3
5 6
=
2
29 30