Деление дробей 15(31/42) ÷ 11(5/8)
Задача: разделить дробь
15
31 42
на
11
5 8
.
Решение:
15
31 42
÷
11
5 8
=
15 ∙ 42 + 31 42
÷
11 ∙ 8 + 5 8
=
661 42
÷
93 8
=
661 42
×
8 93
=
661 ∙ 8 42 ∙ 93
=
5288 3906
=
2644 1953
=
1
691 1953
Ответ:
15
31 42
÷
11
5 8
=
1
691 1953
.
Подробное объяснение:
- Приведём смешанные дроби к неправильному виду:
- Переворачиваем вторую дробь:
- Перемножаем числители и знаменатели:
- Сократим дробь:
- Переведем неправильную дробь в смешанную:
Деление смешанных дробей сводится в их преобразовании к неправильному виду, и умножению первой дроби на перевернутую вторую.
15
31 42
— смешанная дробь.
Для перевода в неправильную, необходимо целое число умножить на знаменатель и прибавить числитель, т.е.:
15
31 42
=
15 ∙ 42 + 31 42
=
661 42
11
5 8
— смешанная дробь.
Для перевода в неправильную, необходимо целое число умножить на знаменатель и прибавить числитель, т.е.:
11
5 8
=
11 ∙ 8 + 5 8
=
93 8
661 42
÷
93 8
=
661 42
×
8 93
661 ∙ 8 42 ∙ 93
=
5288 3906
В результате деления получилась дробь
5288 3906
, которую можно сократить.
Для этого необходимо найти наибольшее число, на которое делится и 5288, и 3906. В нашем случае это — 2. Разделим числитель и знаменатель на 2 и получим:
5288 : 2 3906 : 2
=
2644 1953
Подробнее о сокращении дробей, смотрите здесь.
2644 1953
— неправильная, т.к. числитель 2644 больше знаменателя 1953.
Переведем её в смешанную дробь. Для этого разделим числитель на знаменатель. Целая часть от деления — будет целой частью смешанной дроби, остаток от деления — числителем, знаменатель — останется прежним. В нашем случае это:
2644 1953
=
1
691 1953
Подробнее о переводе в смешанную дробь, смотрите тут.
Таким образом:
15
31 42
÷
11
5 8
=
1
691 1953