Сложение дробей 2(2/2) + 4/2
Задача: сложить дроби
2
2 2
и
4 2
.
Решение:
2
2 2
+
4 2
=
2 ∙ 2 + 2 2
+
4 2
=
6 2
+
4 2
=
6 + 4 2
=
10 2
=
5 1
=
5
Ответ:
2
2 2
+
4 2
=
5
.
Подробное объяснение:
- Приведём смешанные дроби к неправильному виду:
- Складываем числители, знаменатели при этом остаются без изменения:
- Сократим дробь:
- Переведем неправильную дробь в смешанную:
Сложение смешанных дробей с одинаковыми знаменателями, сводится в их преобразовании к неправильному виду, и дальнейшему сложению числителей. Для этого:
2
2 2
— смешанная дробь.
Для перевода в неправильную, необходимо целое число умножить на знаменатель и прибавить числитель, т.е.:
2
2 2
=
2 ∙ 2 + 2 2
=
6 2
4 2
— неправильная дробь.
6 + 4 2
=
10 2
В результате сложения получилась дробь
10 2
, которую можно сократить.
Для этого необходимо найти наибольшее число, на которое делится и 10, и 2. В нашем случае это — 2. Разделим числитель и знаменатель на 2 и получим:
10 : 2 2 : 2
=
5 1
Подробнее о сокращении дробей, смотрите тут.
5 1
— неправильная, т.к. числитель 5 больше знаменателя 1.
Переведем её в смешанную дробь. Для этого разделим числитель на знаменатель. Целая часть от деления — будет целой частью смешанной дроби, остаток от деления — числителем, знаменатель — останется прежним. В нашем случае это:
5 1
=
5
Подробнее о переводе в смешанную дробь, смотрите тут.
Таким образом:
2
2 2
+
4 2
=
5
Смотрите также:
- Смотрите также
- Калькуляторы
- Последние примеры