Сложение дробей 4(1/6) + 1(1/5)
Задача: сложить дроби
4
1 6
и
1
1 5
.
Решение:
4
1 6
+
1
1 5
=
4 ∙ 6 + 1 6
+
1 ∙ 5 + 1 5
=
25 6
+
6 5
=
25 ∙ 5 30
+
6 ∙ 6 30
=
125 30
+
36 30
=
125 + 36 30
=
161 30
5
11 30
Ответ:
4
1 6
+
1
1 5
=
5
11 30
.
Подробное объяснение:
- Приведём смешанные дроби к неправильному виду:
- Найдём наименьший общий знаменатель (НОЗ):
- Вычислим дополнительные множители для каждой дроби. Для этого НОЗ разделим на каждый знаменатель:
- Приведем дроби к новому знаменателю. Для этого полученные множители перемножаем с числителями, а знаменателем обоих дробей станет найденный НОЗ:
- Складываем числители:
- Переведем неправильную дробь в смешанную:
Сложение дробей с разными знаменателями, сводится в их преобразовании к общему знаменателю, и дальнейшему сложению числителей. Для этого:
4
1 6
— смешанная дробь.
Для перевода в неправильную, необходимо целое число умножить на знаменатель и прибавить числитель, т.е.:
4
1 6
=
4 ∙ 6 + 1 6
=
25 6
1
1 5
— смешанная дробь.
Для перевода в неправильную, необходимо целое число умножить на знаменатель и прибавить числитель, т.е.:
1
1 5
=
1 ∙ 5 + 1 5
=
6 5
НОЗ — это наименьшее число, которое без остатка делится на оба знаменателя. В нашем случае необходимо найти наименьшее число, которое делится и на 6 и на 5. Это — 30.
30 : 6 = 5
30 : 5 = 6
25 6
+
6 5
=
25 ∙ 5 30
+
6 ∙ 6 30
=
125 30
+
36 30
125 + 36 30
=
161 30
161 30
— неправильная, т.к. 161 больше 30.
Переведем её в смешанную дробь. Для этого разделим числитель на знаменатель. Целая часть от деления — будет целой частью смешанной дроби, остаток от деления — числителем, знаменатель — останется прежним. В нашем случае это:
161 30
=
5
11 30
Подробнее о переводе в смешанную дробь, смотрите тут.
Таким образом:
4
1 6
+
1
1 5
=
5
11 30