Сложение дробей 4/11 + 3/5

Задача: сложить дроби
4 11
и
3 5

.

Решение:
4 11
+
3 5
=
4 ∙ 5 55
+
3 ∙ 11 55
=
20 55
+
33 55
=
20 + 33 55
=
53 55
Ответ:
4 11
+
3 5
=
53 55

.

Подробное объяснение:

    Сложение дробей с разными знаменателями, сводится в их преобразовании к общему знаменателю, и дальнейшему сложению числителей. Для этого:

  1. Найдём наименьший общий знаменатель (НОЗ):
  2. НОЗ — это наименьшее число, которое без остатка делится на оба знаменателя. В нашем случае необходимо найти наименьшее число, которое делится и на 11 и на 5. Это — 55.

  3. Вычислим дополнительные множители для каждой дроби. Для этого НОЗ разделим на каждый знаменатель:
  4. 55 : 11 = 5

    55 : 5 = 11

  5. Приведем дроби к новому знаменателю. Для этого полученные множители перемножаем с числителями, а знаменателем обоих дробей станет найденный НОЗ:
  6. 4 ∙ 5 55
    +
    3 ∙ 11 55
    =
    20 55
    +
    33 55

  7. Складываем числители:
  8. 20 + 33 55
    =
    53 55
Таким образом:
4 11
+
3 5
=
53 55

Смотрите также:

  • Смотрите также
  • Калькуляторы
  • Последние примеры

Калькулятор сложения дробей

* Все поля обязательны
  • +
Подписаться
Уведомить о
guest
0 комментариев
Межтекстовые Отзывы
Посмотреть все комментарии