Сложение дробей 6/7 + 11/8
Задача: сложить дроби
6 7
и
11 8
.
Решение:
6 7
+
11 8
=
6 ∙ 8 56
+
11 ∙ 7 56
=
48 56
+
77 56
=
48 + 77 56
=
125 56
=
2
13 56
Ответ:
6 7
+
11 8
=
2
13 56
.
Подробное объяснение:
- Найдём наименьший общий знаменатель (НОЗ):
- Вычислим дополнительные множители для каждой дроби. Для этого НОЗ разделим на каждый знаменатель:
- Приведем дроби к новому знаменателю. Для этого полученные множители перемножаем с числителями, а знаменателем обоих дробей станет найденный НОЗ:
- Складываем числители:
- Переведем неправильную дробь в смешанную:
Сложение дробей с разными знаменателями, сводится в их преобразовании к общему знаменателю, и дальнейшему сложению числителей. Для этого:
НОЗ — это наименьшее число, которое без остатка делится на оба знаменателя. В нашем случае необходимо найти наименьшее число, которое делится и на 7 и на 8. Это — 56.
56 : 7 = 8
56 : 8 = 7
6 ∙ 8 56
+
11 ∙ 7 56
=
48 56
+
77 56
48 + 77 56
=
125 56
125 56
— неправильная дробь, т.к. 125 больше 56.
Переведем её в смешанную дробь. Для этого разделим числитель на знаменатель. Целая часть от деления — будет целой частью смешанной дроби, остаток от деления — числителем, знаменатель — останется прежним. В нашем случае это:
125 56
=
2
13 56
Подробнее о переводе в смешанную дробь, смотрите тут.
Таким образом:
6 7
+
11 8
=
2
13 56
Смотрите также:
- Смотрите также
- Калькуляторы
- Последние примеры