Сократите дробь 10(20/10)

Задача: сократить дробь
10
20 10
Решение:
10
20 10
=
10 ∙ 10 + 20 10
=
120 10
=
120 : 10 10 : 10
=
12 1
=
12
Ответ:
10
20 10
=
12

Подробное объяснение:

  1. Переведем смешанную дробь в неправильную:
  2. Для перевода в неправильную, необходимо целое число умножить на знаменатель и прибавить числитель, т.е.:
    10
    20 10
    =
    10 ∙ 10 + 20 10
    =
    120 10

  3. Найдём наибольший общий делитель (НОД)
  4. НОД — это наибольшее число, на которое 120 и 10 делятся без остатка.

    Для нахождения НОД (120;10) необходимо:

    • разложить 120 и 10 на простые множители;
    • взять те множители, которые входят в разложение каждого из чисел;
    • вычислить их произведение.

    Отсюда:

    120 = 2 · 2 · 2 · 3 · 5;

    120 2
    60 2
    30 2
    15 3
    5 5
    1

    10 = 2 · 5;

    10 2
    5 5
    1
    НОД (120; 10) = 2 · 5 = 10.

  5. Разделим числитель и знаменатель на НОД
  6. 120 : 10 10 : 10
    =
    12 1

  7. Переведем неправильную дробь в смешанную:
  8. 12 1
    — неправильная, т.к. числитель 12 больше знаменателя 1.
    Переведем её в смешанную дробь. Для этого разделим числитель на знаменатель. Результат деления — будет целой частью, остаток от деления — числителем, знаменатель — остается прежним. В нашем случае это:
    12 1
    =
    12
Таким образом:
10
20 10
=
12

Смотрите также:

Подписаться
Уведомить о
guest
0 комментариев
Межтекстовые Отзывы
Посмотреть все комментарии