Сравнение дробей 11/4 и 27/8

Задача: Сравнить дроби
11 4
и
27 8
Решение:
11 4
?
27 8
=
11 ∙ 2 8
?
27 ∙ 1 8
=
22 8
?
27 8
;
22 8
<
27 8
=
11 4
<
27 8
Ответ:
11 4
<
27 8

Подробное объяснение:

  1. Приведем дроби к общему знаменателю (найдем НОЗ):
  2. НОЗ — это наименьшее число которое без остатка делится на оба знаменателя. В нашем случае необходимо найти наименьшее число которое делится и на 4 и на 8. Это — 8.

  3. Найдем дополнительные множители для каждой дроби. Для этого НОЗ делим на каждый знаменатель:
  4. 8 : 4 = 2

    8 : 8 = 1

    Полученные множители перемножаем с числителями:

    11 4
    ?
    27 8
    =
    11 ∙ 2 8
    ?
    27 ∙ 1 8
    =
    22 8
    ?
    27 8

  5. Сравним числители:
  6. Сравнение двух дробей с одинаковыми знаменателями сводится к сравнению их числителей. В нашем случае 22 < 27, соответственно:

    22 8
    <
    27 8

    отсюда:

11 4
<
27 8

Смотрите также:

Подписаться
Уведомить о
guest
0 комментариев
Межтекстовые Отзывы
Посмотреть все комментарии