Сравнение дробей 32/33 и 33/32

Задача: Сравнить дроби
32 33
и
33 32
Решение:
32 33
?
33 32
=
32 ∙ 32 1056
?
33 ∙ 33 1056
=
1024 1056
?
1089 1056
;
1024 1056
<
1089 1056
=
32 33
<
33 32
Ответ:
32 33
<
33 32

Подробное объяснение:

  1. Приведем дроби к общему знаменателю (найдем НОЗ):
  2. НОЗ — это наименьшее число которое без остатка делится на оба знаменателя. В нашем случае необходимо найти наименьшее число которое делится и на 33 и на 32. Это — 1056.

  3. Найдем дополнительные множители для каждой дроби. Для этого НОЗ делим на каждый знаменатель:
  4. 1056 : 33 = 32

    1056 : 32 = 33

    Полученные множители перемножаем с числителями:

    32 33
    ?
    33 32
    =
    32 ∙ 32 1056
    ?
    33 ∙ 33 1056
    =
    1024 1056
    ?
    1089 1056

  5. Сравним числители:
  6. Сравнение двух дробей с одинаковыми знаменателями сводится к сравнению их числителей. В нашем случае 1024 < 1089, соответственно:

    1024 1056
    <
    1089 1056

    отсюда:

32 33
<
33 32

Смотрите также:

Подписаться
Уведомить о
guest
0 комментариев
Межтекстовые Отзывы
Посмотреть все комментарии