4(7/27) умножить на 16(11/16)
Задача: найти произведение дробей
4
7 27
и
16
11 16
.
Решение:
4
7 27
×
16
11 16
=
4 ∙ 27 + 7 27
×
16 ∙ 16 + 11 16
=
115 27
×
267 16
=
115 ∙ 267 27 ∙ 16
=
30705 432
=
10235 144
=
71
11 144
Ответ:
4
7 27
×
16
11 16
=
71
11 144
.
Подробное объяснение:
- Приведём смешанные дроби к неправильному виду:
- Перемножаем числители и знаменатели:
- Сократим дробь:
- Переведем неправильную дробь в смешанную:
Умножение смешанных дробей сводится в их преобразовании к неправильному виду и дальнейшему перемножению числителей и знаменателей.
4
7 27
— смешанная дробь.
Для перевода в неправильную, необходимо целое число умножить на знаменатель и прибавить числитель, т.е.:
4
7 27
=
4 ∙ 27 + 7 27
=
115 27
16
11 16
— смешанная дробь.
Для перевода в неправильную, необходимо целое число умножить на знаменатель и прибавить числитель, т.е.:
16
11 16
=
16 ∙ 16 + 11 16
=
267 16
115 ∙ 267 27 ∙ 16
=
30705 432
В результате умножения получилась дробь
30705 432
, которую можно сократить.
Для этого необходимо найти наибольшее число, на которое делится и 30705, и 432. В нашем случае это — 3. Разделим числитель и знаменатель на 3 и получим:
30705 : 3 432 : 3
=
10235 144
Подробнее о сокращении дробей, смотрите тут.
10235 144
— неправильная, т.к. числитель 10235 больше знаменателя 144.
Переведем её в смешанную дробь. Для этого разделим числитель на знаменатель. Целая часть от деления — будет целой частью смешанной дроби, остаток от деления — числителем, знаменатель — останется прежним. В нашем случае это:
10235 144
=
71
11 144
Подробнее о переводе в смешанную дробь, смотрите тут.
Таким образом:
4
7 27
×
16
11 16
=
71
11 144