Вычитание дробей 1(1/1) — 1(1/2)
Задача: вычислите
1
1 1
минус
1
1 2
.
Решение:
1
1 1
—
1
1 2
=
1 ∙ 1 + 1 1
—
1 ∙ 2 + 1 2
=
2 1
—
3 2
=
2 ∙ 2 2
—
3 ∙ 1 2
=
4 2
—
3 2
=
4 — 3 2
=
1 2
Ответ:
1
1 1
—
1
1 2
=
1 2
.
Подробное объяснение:
- Приведём смешанные дроби к неправильному виду:
- Найдём наименьший общий знаменатель (НОЗ):
- Вычислим дополнительные множители для каждой дроби. Для этого НОЗ разделим на каждый знаменатель:
- Приведем дроби к новому знаменателю. Для этого полученные множители перемножаем с числителями, а знаменателем обоих дробей станет найденный НОЗ:
- Вычитаем числители:
Вычитание дробей с разными знаменателями, сводится в их преобразовании к общему знаменателю, и дальнейшему вычитанию числителей. Для этого:
1
1 1
— смешанная дробь.
Для перевода в неправильную, необходимо целое число умножить на знаменатель и прибавить числитель, т.е.:
1
1 1
=
1 ∙ 1 + 1 1
=
2 1
1
1 2
— смешанная дробь.
Для перевода в неправильную, необходимо целое число умножить на знаменатель и прибавить числитель, т.е.:
1
1 2
=
1 ∙ 2 + 1 2
=
3 2
НОЗ — это наименьшее число, которое без остатка делится на оба знаменателя. В нашем случае необходимо найти наименьшее число, которое делится и на 1, и на 2. Это — 2.
2 : 1 = 2
2 : 2 = 1
2 1
—
3 2
=
2 ∙ 2 2
—
3 ∙ 1 2
=
4 2
—
3 2
4 — 3 2
=
1 2
Таким образом:
1
1 1
—
1
1 2
=
1 2