Деление дробей 4/9 ÷ 1(3/5)
Задача: разделить дробь
4 9
на
1
3 5
.
Решение:
4 9
÷
1
3 5
=
4 9
÷
1 ∙ 5 + 3 5
=
div class=»reshenie_koren_middle»>4 9
÷
8 5
=
4 9
×
5 8
=
4 ∙ 5 9 ∙ 8
=
20 72
=
5 18
Ответ:
4 9
÷
1
3 5
=
5 18
.
Подробное объяснение:
- Приведём смешанные дроби к неправильному виду:
- Переворачиваем вторую дробь:
- Перемножаем числители и знаменатели:
- Сократим дробь:
Деление смешанных дробей сводится в их преобразовании к неправильному виду, и умножению первой дроби на перевернутую вторую.
4 9
— обыкновенная дробь.
1
3 5
— смешанная дробь.
Для перевода в неправильную, необходимо целое число умножить на знаменатель и прибавить числитель, т.е.:
1
3 5
=
1 ∙ 5 + 3 5
=
8 5
4 9
÷
8 5
=
4 9
×
5 8
4 ∙ 5 9 ∙ 8
=
20 72
В результате деления получилась дробь
20 72
, которую можно сократить.
Для этого необходимо найти наибольшее число, на которое делится и 20, и 72. В нашем случае это — 4. Разделим числитель и знаменатель на 4 и получим:
20 : 4 72 : 4
=
5 18
Подробнее о сокращении дробей, смотрите здесь.
Таким образом:
4 9
÷
1
3 5
=
5 18
Смотрите также:
Полезные материалы
Онлайн калькуляторы
Последние примеры на деление дробей
- Сколько будет
2 5÷44 1
-
3 5разделить на10 1- решение с ответом
-
45 64÷3 10- решение с ответом
- Выполните деление дробей
15 22и15 33
- Запишите результат от деления 11 1на7 6
- Запишите результат от деления
32 63на57 49
- Выполните деление дробей
3 25и52 13
- Результат от деления 33 7на64 105
- Выполните деление
7 31и1 31