Сложение дробей 1/3 + 1/6
Задача: cложить дроби
1 3
и
1 6
Решение:
1 3
+
1 6
=
1 ∙ 2 6
+
1 ∙ 1 6
=
2 6
+
1 6
=
2 + 1 6
=
3 6
=
1 2
Ответ:
1 3
+
1 6
=
1 2
Подробное объяснение:
- Найдём наименьший общий знаменатель (НОЗ):
- Вычислим дополнительные множители для каждой дроби. Для этого НОЗ разделим на каждый знаменатель:
- Приведем дроби к новому знаменателю. Для этого полученные множители перемножаем с числителями, а знаменателем обоих дробей станет найденный НОЗ:
- Складываем числители:
- Сократим дробь:
Сложение дробей с разными знаменателями, сводится в их преобразовании к общему знаменателю, и дальнейшему сложению числителей. Для этого:
НОЗ — это наименьшее число, которое без остатка делится на оба знаменателя. В нашем случае необходимо найти наименьшее число, которое делится и на 3 и на 6. Это — 6.
6 : 3 = 2
6 : 6 = 1
1 ∙ 2 6
+
1 ∙ 1 6
=
2 6
+
1 6
2 + 1 6
=
3 6
В результате сложения получилась дробь
3 6
, которую можно сократить.
Для этого необходимо найти наибольшее число, на которое делится и 3, и на 6. В нашем случае это — 3. Разделим числитель и знаменатель на 3 и получим:
Таким образом:
1 3
+
1 6
=
1 2
Смотрите также:
Полезные материалы
Онлайн калькуляторы
Последние примеры на сложение дробей
Калькулятор сложения дробей
Подписаться
авторизуйтесь
0 комментариев