Сложение дробей 3/20 + 1/4
Задача: сложить дроби
3 20
и
1 4
.
Решение:
3 20
+
1 4
=
3 ∙ 1 20
+
1 ∙ 5 20
=
3 20
+
5 20
=
3 + 5 20
=
8 20
=
2 5
Ответ:
3 20
+
1 4
=
2 5
.
Подробное объяснение:
- Найдём наименьший общий знаменатель (НОЗ):
- Вычислим дополнительные множители для каждой дроби. Для этого НОЗ разделим на каждый знаменатель:
- Приведем дроби к новому знаменателю. Для этого полученные множители перемножаем с числителями, а знаменателем обоих дробей станет найденный НОЗ:
- Складываем числители:
- Сократим дробь:
Сложение дробей с разными знаменателями, сводится в их преобразовании к общему знаменателю, и дальнейшему сложению числителей. Для этого:
НОЗ — это наименьшее число, которое без остатка делится на оба знаменателя. В нашем случае необходимо найти наименьшее число, которое делится и на 20 и на 4. Это — 20.
20 : 20 = 1
20 : 4 = 5
3 ∙ 1 20
+
1 ∙ 5 20
=
3 20
+
5 20
3 + 5 20
=
8 20
В результате сложения получилась дробь
8 20
, которую можно сократить.
Для этого необходимо найти наибольшее число, на которое делится и 8, и на 20. В нашем случае это — 4. Разделим числитель и знаменатель на 4 и получим:
Таким образом:
3 20
+
1 4
=
2 5
Смотрите также:
- Смотрите также
- Калькуляторы
- Последние примеры
Полезные материалы
Онлайн калькуляторы
Последние примеры на сложение дробей
- Выполните сложение 61 8и23 20
- Выполните сложение дробей
2 6и11 12
- 15 13+311 13- решение с ответом
- Сложить дроби
4 12и7 12
- Сложить дроби
13 24и(-48 39)
- -2 3прибавить13 15- решение с ответом
- Выполните сложение дробей 85 10и354 5
- Сложить дроби 18 21и43 14
- Выполните сложение дробей
5 4и5 9